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Abstract

Background

The fungus Aspergiflus fumigatus is the leading cause of invasive mold infections, which cause severe disease

and death in immunocompromised people. Use of triazole antifungal medications in recent decades has
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improved patient survival; however, triazole-resistant infections have become common in parts of Europe and
are emerging in the United States. Triazoles are also a class of fungicides usedin plant agriculture, and certain
triazole-resistant A. fumigatus strains found causing disease inhumans have been linked to environmental

fungicide use.

Objectives
We examined U.S. temporal and geographic trends in use of triazole fungicides using U.S. Geological Survey

agricultural pesticide use estimates.

Discussion

Based on our analysis, overall tonnage of triazole fungicide use nationwide was relatively constant during 1992—
2005 but increased >4-fold during 2006-2016't6.2.9 million kg iri:2016..During 1992-2005, triazole fungicide use
occurred mostly in orchards and grapes, wheat, and other crops; but recent increases in use have occurred
primarily in wheat, corn, soybeans, and other crops; particularly in Midwest and Southeast states. We conclude
that given chemical similarities between triazole fungicides and triazole antifungal drugs used in human
medicine, increased maonitoring for environmental'and clinical triazole resistance in A. fumigatus would improve
overall understanding of these interactions, as well as help identify strategies to mitigate development and

spread of resistance

Background

invasive aspergillosis is a severe and frequently fatal fungal disease (mortality rate 25%-59%) that most

commonly affects people who are immunocompromised (e.g., because of transplantation or malignancy) or

have structural lung disease {e.g., chronic obstructive pulmonary disease (COPD)) (Kontoyiannis et al. 2010;
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Pappas et al. 2010; Steinbach et al. 2012). Approximately 15,000 U.S. hospitalizations with invasive aspergillosis
are estimated to occur annually based on medical coding data, with incidence increasing over the past decade,
in part because of growing numbers of patients at risk (Benedict et al. 2019; Vallabhaneni et al. 2017). In high
risk groups, such as solid organ transplantation recipients, incidence can approach 1% (Pappas et al. 2010).
However, medical coding likely does not encompass all diagnosed cases, and the lack of hational public health
surveillance limits understanding of the true burden. Furthermore, many more undiagnosed cases likely exist. A
systematic review of 31 studies of autopsy-confirmed misdiagnosis among'intensive care unit patients during
1966-2011 (5,863 examinations, 14 countries represented) indicated that aspergillosis was one'of the most

commonly missed diagnoses (Winters et al. 2012).

Aspergillus fumigatus, the species of pathogenic fungi that causes most invasive aspergillosis (Patterson et al.
2000), is common in the environment, particuldrly in decaying plant material but also at lowlevels in ambient air
(Tekaia and Latgé 2005). Unlike many'other fungi, it is thermotolerant up to 65 degrees Celsius and grows
optimally at normal and febrile:human body temperatures [roughly 37-40 degree Celsius), including during
fever response, a key factorin.its human pathogenicity, as well as at elevated temperatures found in composting
organic matter (Kwon-Chung and Sugui 2013} Although it is widely present in agricultural areas, it is not known
to cause diséase in plants. Mold-active triazole antifungal medications (e.g., voriconazole) are the mainstay of
treatment for invasive aspergillosis, having substantially improved patient survival following their introduction in
the 1990s {Hetbrecht et al..2002; Verweij et al. 2016a). Only three main classes of antifungal medications

(triazoles, echinocandins ;and polyenes) are available to treat systemic fungal infections like aspergillosis.

Whereas relatively few fungi cause invasive disease in humans, fungi are the most common cause of plant

infections. Fungicides have been widely used for centuries to treat plant infections, prevent crop loss, and

increase agricultural yield; fungicides are also used to preserve wood and other materials. (Morton and Staub
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2008; Russell 2005; Kleinkauf and European Centre for Disease Preventionand Control 2013; US EPA 2015; Wise
et al. 2019; Wise and Mueller 2011). Data on global triazole usage are limited, and the Food and Agriculture
Organization provides data on combined triazole and diazole use, making it difficult to determine the amount of
triazole use alone (FAOSTAT). Sales data suggest that triazoles are widely used agricultural fungicide classes,
comprising over a quarter of estimated global fungicide sales {Kleinkauf and European Centre for Disease
Prevention and Control 2013). Fungal pathogens of agricultural crops have deyeloped resistance'to:many classes
of fungicides, including triazoles (Cools and Fraaije 2008; Hu et al. 2016; Price et al. 2015), prompting the
Fungicide Resistance Action Committee (FRAC) and other organizations'to devote substantial resotrces to
preventing and managing resistance (FRAC | Home). Notably, certain agricultural triazole fungicides, including
bromucconazole, difenoconazole, epoxiconazole, propiconazole, and tebuconazole are structurally highly similar
to medical triazoles used to treat aspergillosis (e.g:; voriconazole, itraconazole, and posaconazole) (Snelders et

al. 2012).

Like plant pathogens that have:developed resistance.to triazole fungicides, A. fumigatus strains resistant to
medical triazoles have emerged globally, prompting public health concerns. Resistant aspergillosis is associated
with treatment failure'and high mortality, ranging from 42% to 88% (Lestrade et al. 2019; Resendiz-Sharpe et al.
2019; van der Linden et al. 2011). Death geceurs more commonly in resistant infections, with 90-day mortality
being 25% higher in patients with resistant versus susceptible aspergillosis in a European study (Lestrade et al.
2019). Resistance in A. fumigatus can develop in two ways. First, it can develop inside the body under selection
pressure from long-term use of triazole medications. During the 1990s, small numbers of triazole-resistant
infections were identified in patients receiving long-term triazole prophylaxis or therapy {e.g., for aspergilloma,
cavitary lung disease, or other non-invasive aspergillosis), with resistance mechanisms involving point mutations
in the triazole target and ergosterol synthesis gene, CYP51A (Camps et al. 2012; Heo et al. 2017; Howard et al.

2013, 2009). Resistance occurs less frequently in invasive aspergillosis, presumably because the fungus has less
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time to grow in the body. Given the contribution of antifungal use to triazole resistance in A. fumigatus, it is
notable that triazole use in U.S. hospitals declined by 21% during 2006—-2012, the most recent years with

available data (Vallabhaneni et al. 2018).

in the late 1990s, a new resistance mechanism was identified in patients who had A fumigatys infections, and
the same mechanism was identified in A. fumigotus exposed to triazole fungicides in the environment. This
mechanism, TR34/L98H (which we will refer to as TR34), includes a 34-base pair tandem repeat (TR) in the
cyp51A promoter coupled with a specific point mutation in the cading region.and can confer resistance to all
triazole medications, known as pan-resistance (Abdolrasouli et al.'2018). In contrast to the resistance
mechanism that can develop inside the human body, this environmental resistance was observed in isolates
primarily from patients who had never taken trigZtle medicines {Snelders et al. 2008; Verweij et al. 2007), with
subsequent studies finding that 53%—64% of patients with resistant.infection lacked exposure to medical

triazoles (van der Linden et al. 2011, 2013},

Because triazoles are widelyused in agriculture as fungicides, researchers suspected that the TR34-based
resistance developed in the environment under fungicide-induced selection pressure (Bromley et al. 2014;
Snelders et al. 2009). and that infections resulted from exposure to already-resistant A. fumigatus rather than
resistance developing in the patient (Berger et al. 2017). Subsequent research provided additional evidence for
this hypothesis and identified a second genotype, TR46/Y121F/T289A(TR46), thought to be linked to fungicide
use {Astvad et al. 2014: Chowdhary et al. 2014b, 2015; Lavergne etal. 2015; Le Pape et al. 2016; Montesinos et
al. 2014; Steinmann et al. 2015; van der Linden et al. 2013, 2015; Vermeulen et al. 2012). Although the TR-based
mechanisms may not be definitive markers of environmental resistance, one report described a resistant isolate
with a TR120 mechanism in a patient on long-term triazole therapy for chronic aspergillosis (Hare et al. 2019).

Overall, evidence suggests that isolates with TR34 and TR46 mutations result from environmental triazole
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exposure (Buil et al. 2019).

TR34 and TR46-mediated resistance has become common in patients with aspergillosis in parts of Europe, where
up to 20% of infections are now resistant to medical triazoles (Bueid et al. 2010; Leliévre etal. 2013; Resendiz-
Sharpe et al. 2019; van der Linden et al. 2015; Vermeulen et al. 2013). Resistant A. fumigatus:strains with TR34
and TR46 mutations have also been reported among azole-naive patients in the Middle East, Asia, Africa,
Australia, and South America (Chowdhary et al. 2014a, 2017; Meis et al. 2016; Vermeulen et al. 2013; Verweij et
al. 2016a). In addition, environmental isolates with TR34 and TR46 mutations have been detected'in Europe,
Asia, South America, and East Africa (Alvarez-Morenoet g|.2019; Badali et al. 2013; Chowdhary et al. 2012,
2014b; Dunne et al. 2017; Le Pape et al.2016; Mortensen et al. 2010; Schoustra et al. 2019; Vermeulen et al.
2012). Further supporting a link between fungicide use and clinical resistance, triazole fungicides similar to
medical antifungals were introduced for agricultural use in the Netherlands just before the first TR34 strain was

found in humanclinical settings in the late-1990s (Meis et al. 2016).

In the United States, associations between agricultural triazole fungicide use and human infections have not
been investigated, but a small.number of infections caused by resistant A.fumigatus strains have been identified
(CDC 2019). The first TR-based resistance in patients was reported in 2016, including retrospectively identified
isolates (two TRasand two TRas) collected asearly as 2008 (Vazquez and Manavathu 2016; Wiederhold et al.
2016). An additional 6 isolates were detected through 2018 (Beer 2018). Together, these 10 isolates likely reflect
only a small proportian of the true number of resistant infections given lack of standardized surveillance and
limited clinical testing. Resistant A. fumigatus strains with the TRas mutation have also been found in peanut crop
debris inthe U.S. state of Georgia that had been treated with propiconazole and tebuccnazole, triazoles that are
structurally similar to medical triazoles {Hurst et al. 2017), demonstrating this resistance was also present in the
U.S. agricultural environment. Because of this emergence in the United States, CDC has placed triazole-resistant

6
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A. fumigatus on its “Watch List” for antimicrobial resistance threats (CDC 2019).

Given increased global incidence of triazole-resistant Aspergillus infections, recent identification of triazole
resistance mechanisms linked to environmental agricultural fungicide use in the United States, and triazole
agricultural fungicides with the same mechanism of action as triazole antifungal medications;, we characterized
trends in U.S. agricultural triazole use to explore possible implications for antifungal‘résistant human infections.
We also examined available data regarding the use of triazole fungicides fot purposes other than food

production, including turf and other landscape maintenance and flower production,

Methods

We analyzed publicly available state-level estimiates of annual'agricultural pesticide use from the U.S. Geological
Survey (USGS) {Baker and Stone 2015; Stone 2013; Thelin and Stone 2013) for 15 triazole fungicides used in the
United States during 1992-2016,(USGS 2017). Dats for District of Columbia, Hawaii, Alaska, and territories were
not included in the estimates.:Methods for these estimates are described in detail elsewhere (Baker and Stone
2015; Stone 2013; Thelin and Stone 2013). Briefly, for states other than California, proprietary farm survey data
collected by'Gfk Kynetec, Inc. on amounts of pesticide use on specific crops are aggregated by the U.S.
Department of Agriculture to estimate pesticide-by-crop use rates within Crop Reporting Districts (CRDs). Each
CRD covers.miiltiple counties and each county is assigned to a single CRD. County-level pesticide use estimates
are then derived by applying CRD-level pesticide-by-crop use rates to county-level estimates of the harvested
acreage of each relevant crop {based on U.S. Department of Agriculture’s Census of Agriculture data) and state-
level use estimates are derived by summing the county-level estimates. When survey-based pesticide-by-crop
use rates are missing for a CRD in a given year, two different approaches are used to account for the missing

data (Thelin and Stone, 2013). Estimates based on the first approach assumes zero use for counties with missing
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data and are referred to as “low” use estimates. Estimates based on the second approach extrapolates rates
based on data for nearby CRDs and are referred to as “high” use estimates. Specifically, pesticide-by-crop use
rates are estimated using the median rate for all contiguous CRDs; or, if data are missing for all contiguous CRDs,
the median rate for all CRDs adjacent to contiguous CRDs; or, if data are missing for all of these CRDs, the
median of all non-zero rates for all CRDs within the same USDA Farm Resource Regign. To simplify
interpretation, we used mean of the low and high annual agricultural pesticide use estimates in this report,
rather than presenting each separately. For California, USGS inputs data on county-level pesticide use from the
state’s Pesticide Use Reports (PUR), collected by the Department.of Pesticide Regiilation (California Department

of Pesticide Regulation).

Fifteen triazoles in the USGS dataset are used primarily as fungicides.'Because seven of these triazoles
(difenoconazole, metconazole, myclobutanil, propiconazole, prathiconazole, tebuconazole, and triadimefon)
accounted for 93% of triazole use, we grauped the remaining eight fungicides (cyproconazole, fenbuconazole,
flusilazole, flutriafol, ipconazole, tetraconazole, triadimenacl:and triticonazole) into a single category. Three of
the five agricultural triazoles documented to be structurally similar to medical triazoles (Snelders et al. 2012) are

registered for use in the United States (difenoconazole, propiconazole, and tebuconazole).

Based on USGS classifications, we grouped crops into eight categories: corn, cotton, orchards and grapes (stone
fruit trees, citrus, nut trees, apples, pears, and grapevines), rice, soybeans, vegetables and fruit {vegetables and
non-orchard fruit, including beans, peas, greens, berries, and melons), wheat, and other crops. The other crop
category includes pasture and hay (cropland for pasture, fallow and idle cropland, pastureland, and other hay),
alfalfa, sorghum, non-wheat grains, tobacco, peanuts, sugarcane, sugar beets, and other miscellaneous crops

{Baker and Stone 2015; Stone 2013; Thelin and Stone 2013).
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193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

We characterized estimated U.S. triazole fungicide usage stratified by year, specific compounds, crop type, and
geographical location. To aid in interpretation, we used mean of the low and high annual agricultural pesticide
estimates rather than presenting each separately. We also examined state-specific use of triazoles, including by
crop type, over 5 time periods (1992-1996, 19972001, 2002-2006,2007-2011, and 2012-2016) and compared
use during the periods 2012-2016 versus 1992-1996. To calculate differences over time, we:summed the mean
metric tons of fungicide use for years 2012-2016 and subtracted that value with mean.metric tonsfor years
1992-1996. All analysiswas completed in R {Version 3.6.3, RStudio) and maps were created in ArcGlS (ArcGIS

Desktop 10.5.1, Esri Inc.).

Because triazole fungicides are used in the environment for purposes other than food production, we separately
examined California’s PUR data for 2017, the most.recent year with available data, because the system includes
data on wider range of uses than the USGS dataset (California Department of Pesticide Regulation 2017). We
examined triazole use in turf (golf course turf, landscape maintenance, bermudagrass, rights of way, and
turf/sod), ornamental (garland chrysanthemum, greenhouse flower, greenhouse plants in containers,
greenhouse transplants, outdoor flower, outdoor plants in containers, and outdoor transplants), treated lumber,
and other (airport, animal burrows, animal premise, beehive, Christmas tree, non-agricultural outdoor buildings,
commercial storages or warehouses, commodity fumigation, dairy equipment, ditch bank, farm building,
agricuftural building;:food processing plant, timberland forest, other fumigation, seed grass, greenhouse
fumigation; household, industrial processing water, industrial site, industrial disposable water waste disposal

systems, public health, regulatory pest control, research commaodity, structural pest control.

Results

Estimated triazole fungicide use was relatively constant between 1992 (428 metric tons) and 2006 (539 metric

ED_014011_00000053-00009



217 tons), but increased 434% from 2006 to 2016, to 2,880 metric tons (Figure 1, Table S1).Triazole use by

218 compound differed over time (Figure 2A, Table S2). Estimated use of propiconazole and tebuconazole, the most
219 widely used fungicides in 2016, increased little from 1992 to 2006, whereas use increased by 366% for

220 propiconazole and 229% for tebuconazole during 2006—2016. First use of three newer triazoles difenoconazole,
221 metconazole, and prothiconazole was reported after 2006, and usage increased to atotal of 732 metric tons in
222 2016. In contrast, estimated use of myclobutanil and triadimefon decreased during 1992-2016 (Figure 2A, Table
223 S2).

224

225 Estimated triazole fungicide use by crop type also changed substantially over time (Figure 2B, Table S3). During
226 1992-2005, the primary use was on wheat, orchards and grapes, and other crops. Use on wheat began to

227 increase markedly in 2007, with use increasing 683% during 2006-2016;.resulting in the highest use amongst all
228  crops in 2016 (1253 metric tons). Use on cornand soybeans alsoincreased dramatically, with use on corn

229 growing from 0 to 437 metric tons duting 2006-2016, while usgon soybeans increased from 61 to 361 metric
230 tons. Use on other crops, rice, yegetables, and cotton increased steadily over time but at a slower rate. Use on
231 orchards and grapes remained relatively constant (Figure 2B, Table S3).

232

233  The estimated geographical distribution of triazole fungicide use shifted as use by crop type changed over time
234 (Figure 3, Table $4, Table 55). The two'states with the highest use during the 2012--2016 period, North Dakota
235 (1,800 metrictans) and Georgia (1,008 metric tons), also had the largest increasesince 1992-1996. This was
236 primarily due to application on wheat in North Dakota and other crops, suchas peanuts, in Georgia {Figure S1).
237 Although California had the third highest usage during 2012-2016 {711 metric tons), application increased <50%
238 since 1992-1996; triazoles were used primarily on orchards and grapes. The geographic shift is apparent as

239 triazole use increased inthe Midwest with wheat, corn, and soybeans (Figure S1, Table 54, Table S5).

240
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In California, based on estimated PUR data in a single year, 5% of reported triazole fungicide use occurred in

non-food production settings {e.g., turf, flowers, landscape maintenance) (Table S6).

Discussion

Based on our analysis of USGS estimates, overall U.S. triazole fungicide use in.agriculture was relatively constant
during 1992-2005 and increased >4-fold during 2006-2016 based on USGS estimates, Although estimated
triazole usage increased innearly every crop type and state over the period; the increase occurred primarily in
wheat, corn, soybeans, and other crops in the Midwest and Southeast. These incteases may have implications
for triazole resistance in pathogenic fungi for humans, particularly in A. fumigatus, based on evidence from
Europe and elsewhere (Bueid et al. 2010; Leliévre et al. 2013; Resendiz-Sharpe et al. 2019). Given thatresistance
mutations previously associated with environmental triazole use:have récently been detected inU.S. patient and
environmental A. fumigatus isolates (Beer 2018; Hurst et al. 2017), additional study of the role of agricultural

fungicides is warranted.

Several factors may explain the dramatic increase'in U.S. triazole fungicide use after 2006, including increased
corn production in.response.to higher prices, plant diseases in certain regions, ability to use new fungicides on
field crops, and marketing of fungicides for use on field crops (Mueller et al. 2017; Wise and Mueller 2011). For
example, when soybean'tust caused by the fungus Phakopsora pachyrhizi was first identified in the United States
in 2004, several fungicides were registered or granted emergency exemptions for treatment of soybeans,
including myclobutanil, propiconazole, tebuconazole, and tetraconazole (Battaglin et al. 2011; Sconyers et al.
2006; Wise and Mueller 2011). Ancther class of fungicides called strobilurins have been marketed to increase
soybean and corn yield, frequently in combination with triazoles {Swoboda and Pedersen 2009; Wise and

Mueller 2011). Fungicides are also used preemptively and in targeted ways in what are called insurance
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applications, cover sprays, or prophylactic treatments when they are added to spray tanks being used to apply
other pesticideslike herbicides or insecticides {DiFonzo 2012). More research may be helpful to understand the

reasons behind the large increases in triazole fungicides.

Because both triazoles and A. fumigatus can travel in the environment, exposure and resistance selection should
be considered beyond the sites of application at agricultural fields. For example, triazales have been detected in
surface waters across the country (Battaglin et al. 2011; Nowell et al. 2018; Sanders et al. 2018; Smalling and
Orlando 2011). Further, triazoles can be transported long distances in‘the atmosphere {Désert et al. 2018;
Schummer et al. 2010), and residues have been detected in amphibians living in remote locations in the Sierra
Nevada, dozens of miles downwind from where they were applied (Smalling et al. 2013). This mobility means
that A. fumigatus in areas outside agricultural land may be exposed to triazoles, providing opportunity for
resistance to develop. A. fumigatus spores, like spores of fungal plant pathogens, can travel long distances in the
air (Brown and Hovmgller 2002). Triazole tesistant A. fumigatus isolates with fungicide-associated TR mutations
have been found inside the homes and in'the yards of aspergillosis patients, in hospital gardens, and in air

samples taken from inside hospitals {Chowdhary et al. 2014b; Lavergne et al. 2017; van der Linden et al. 2013).

Data on non-food production uses.of triazole fungicides in the United States were limited to a single state,
California, where 5% of trigzole fungicides in 2017 were used for turf, landscape, flowers lumber, and other. This
proportich.islikely to be different in other states and nationally, and is an important topic of further study,
particularly because some of these uses may be closer to population centers. Residential use of triazole
fungicides could also be examined, since consumers can purchase some of these fungicides (e.g., propiconazole)

in stores and online.

Important parallels can be drawn between challenges with agricultural use of medically important triazoles and
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agricultural use of medically important antibacterial drugs. In recent years, the Food and Drug Administration
has required that new antimicrobial drugs used in food-producing animals undergo a risk assessment to
determine potential impacts on bacteria of human health concern (Center for Veterinary Medicine 2019a,
2019b). Evaluation of potential human health impacts of agricultural triazole fungicide should be considered in
more depth. Given that greater use of an antimicrobial is known to select for increased antimicrobial resistance,
and that triazole-resistant infections are emerging in plants, greater triazole registance.in human'pathogens may
emerge as well (Chowdhary et al. 2013). Although detection of TR34 and TR4g has been limited in the United
States to date (Beer 2018), surveillance, reporting, and susceptibility testing for A, fumigatus infections are not
routinely conducted, suggesting that such infections are likely more widespread. For example, only 62% of the
infectious disease doctors surveyed through the Emerging Infections Network in the United States reported
having access to susceptibility testing for A. fumigatus, and such tests'were not routinely ordered. Nevertheless,
physicians reported seeing resistance in the United States, with 19% observing any triazole resistance and 7%
pan-resistance. Fourteen percent were aware of a possible link to.environmental fungicide use (Walker et al.
2018). In contrast, testing forresistance in A. fumigatus in'Europe is more widespread. The European Centre for
Disease Prevention and Control recommends triazole antifungal susceptibility testing on all clinical A. fumigatus
isolates when starting antifungal therapy (Kleinkauf and European Centre for Disease Prevention and Control

2013).

Several limitations are inherent in this descriptive analysis of US fungicide use. First, the USGS data are estimates
based on a proprietary farm survey (except for California, which has a state reporting system}, and some degree
of error is expected. In this descriptive analysis, we took the mean of te USGS low and high triazole estimates,
which is a simplification involving differing estimates. Second, we did not adjust triazole usage by units of
acreage treated, arable land by state or crop, restriction of certain crops in a state, and availability of seed

treatment data, although these may be areas of further study. Finally, although available evidence points to
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environmental fungicide use as a driver of TR-based triazole resistance in A. fumigatus globally, direct
associations between quantity, use pattern, and timing of agricultural fungicide use and resistant human

infections in the United States have not yet been established.

In the United States, research and partnerships may allow for opportunities to intervene early before A.
fumigatus resistance becomes a larger clinical problem. First, more robust labgratory-based surveillance for A.
fumigatus infections (Verweij et al. 2016b), including systematic antifungal susceptibility testing and microbiome
studies, could better determine the burden of resistant infections; as'well as geographic and temporal trends.
Second, wider-scale environmental testing could assess the distribution of resistance in the environment and
agricultural sector. Third, interdisciplinary One Health partnerships could.identify ways to mitigate resistance,
including exploring alternative fungicides and integrated pest managetrient (Chowdhary et al. 2013; Fisher et al.
2018). Finally, antifungal stewardship in humah medicine plays animpottant role in judicious use of these
limited and important medications (Fitzpatrick et al. 2020), and hospital stewardship programs have been shown
to reduce the burden of antimigrobial-resistant human infections (Ananda-Rajah et al. 2012; Baur et al. 2017).
These analyses demonstrate that triazole fungicide use in agriculture has increased >4-fold during 20062016 in
the United States, driven primarily by increases in propiconazole and tebuconazole, with the largest increases in
central parts of the United States. Exposure of A. fumigatus to fungicides can select for mutations that cause
resistance to the primary antifungals tised to treat human aspergillosis. Data on agricultural triazole use can
inform further research, risk assessments, and policy decisions related to resistant fungal infections associated

with patient iliness and death.
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Figure 1: Average agricultural triazole fungicide use by year in metric tons, United

States, 1992-2016

Estimates were derived by averaging “low” and “high” USGS agricultural pesticide estimates for each

year.

For corresponding numeric data, see Table S1.

Data from USGS. 2017. USGS NAWQA: The Pesticide National Synthesis Project.
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Figure 2: Average agricultural triazole fungicide use by crop and compound type in

metric tons, United States, 1992-2016

A. Triazole use by compound type in metric tons, 1992—

2016

Fifteen triazoles included in the USGS dataset were grouped into 8 triazole ¢ategories:
1. Difenoconazole

2. Metconazole

3. Myclobutanil

4. Other

5. Propiconazole

6. Prothiconazole

7. Tebuconazole

8. Triadimefon

The following triazoles werg grouped into other triazole compound type category: cyproconazole,

fenbug¢onazole, flusilazole, flutriafol, ipconazole, tetraconazole, triadimenol, and triticonazole.

For corresponding numeric data, see Table S2.

B. Triazole use by crop type in metric tons,1992-2016

Crops were grouped into 8 categories:

ED_014011_00000053-00032



728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

1. Corn

2. Cotton

3. Orchards and grapes (stone fruit trees, citrus, nut trees, apples, pears, and grapevines)

4. Other crops

5. Rice

6. Soybeans

7. Vegetables and fruit (all vegetables and non-orchard fruit, including beans, peas, greens, berries,
and melons)

8. Wheat

The following crop combinations were grouped into other crop type category: Pasture and Hay

(cropland for pasture, fallow and idle cropland, pastureland, and.other hay); Alfalfa; and Other

(sorghum, non-wheat grains, tobacco, peanuts, sugarcane, sugar beets, and other miscellaneous crops).

For corresponding numeric data, see Table $3.

Data from USGS. 201/. USGS NAWQA: The Pesticide National Synthesis Project.

Estimates were derived by averaging “low” and “high” USGS agricultural pesticide estimates for each

year.
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Figure 3: Agricultural triazole fungicide usage map by state in metric tons, United States, 1992-2016

A: Differences in triazole fungicide usage 2012— 16 and 1992-96 (in metric tons)

B: Triazole fungicide usage 1992-1996 (in metric tons)

C: Triazole fungicide usage 1997-2001 (in metric tons)

D: Triazole fungicide usage 2002-2006 (in metric tons)

E: Triazole fungicide usage 2007-2011 (in metrigc tons)

F: Triazole fungicide usage 2012-2016 {in metric tons)

Estimates from District of Columbia, Hawaii, Alaska, and the territories were not included in the maps.

For corresponding.numeric data, see Table 54, S5, and S6.

Data from USGS. 2017. USGS NAWQA: The Pesticide National Synthesis Project.

Estimates were derived by averaging “low” and “high” USGS agricultural pesticide estimates for each

year.
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